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Deterministic numerical model for treating the three elastic constants
in nematic liquid-crystalline polymers
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In this paper, a deterministic model, which considers the three Frank elastic constants, is introduced. It is
based on a lattice model and a director is used to represent the orientation of the liquid crystals in each cell. A
tensor expression of the so-called “texture field” is deduced so that the nematic symmetry is conserved
automatically. In the current model, the evolution of the director field can be viewed as a process towards the
state of zero elastic torque. The model forms the basis for an improved understanding of the mesoscale
structures and rheological phenomena of nematic liquid-crystalline polymers. It has been tested in its ability to
reproduce the Feslericksz transitions, and simulations of thin liquid crystalline polymer films clearly show the
effect of unequal elastic constants on the director microstructure evolution.
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I. INTRODUCTION h= ﬁs"' HT+ ﬁB , 3)
The texture evolution of liquid-crystalline polymers Aok V*(Vjﬁ) 4
(LCP’s) in external fields is of significant scientific and in- ST :
dustrial interest, and considerable effort has been invested in . - - N
understanding the orientation field, both experimentally and hr=—k{AVXA+VX(AN)}, ®)

numerically. Although modeling has contributed signifi- . . R .
cantly to an improved understanding of this complex process he=ka{BX(VXn)+VX(ixB)}, (6)
[1-12], existing three-dimensional models fall short of the . _ .
requirements for a realistic description on either or both ofwhereA=n-V XA andB=nXx(V Xn).
the following grounds(a) they assume equal Frank elastic  Mesoscale lattice models have been widely Jded] for
constants although LCP’s have very different values, @pd simulating textures and their evolution in LC’s. In general,
Monte Carlo simulations are used, which cannot be easilyhe simulations are started from the isotropic phase, in which
related to real-time evolution or deal with external fields, inthe directors are randomly oriented. The relaxation algo-
particular flow fields, in a straightforward manner. In this rithms are designed to minimize the total free energy of the
paper, we aim to advance our ability to handle LCP structureystem, by picking a cell at random and applying different
evolution by presenting a deterministic model that includesannealing rules. According to Assender and Win#¢ a
the three Frank elastic constants as discrete entities. careful choice of the energy function form is essential, if the
From the macroscopic point of view, the orientation of afull Frank form is not used. The vectorial form of the Frank
nematic liquid crystal can be described by a director fieldelastic free energy has been appl{gd previously to treat
A(r,t) and the equilibrium state of the director field is char- unequal elastic constants. In order to get the free energy, a
acterized by a minimum of the Frank elastic free energy. Theubtly designed flip scheme was developed to treat the direc-
Frank elastic free-energy density of a deformed specimetor symmetry, which requires thatis physically equivalent
relative to the nondeformed one can be expressed by thie —n.

following vectorial form[13] In order to deal with the nematic symmetry, Gruhn and

R R Hess[5] proposed a model, in which the Frank free energy
f=3{ky(V-R)2+ky[A- (VX)) was expressed in a tensorial form. This means that the nem-

. _ atic symmetry is conserved automatically. In their model, a

+ka[AX(VXA)]-[AX(VXA)]}, (1) Monte Carlo algorithm was implemented to find the equilib-

rium configuration of the director field, although only two-
wheren- =1 andn is equivalent to- 1, ky, k,, andk; are  dimensional simulation results were reporfdd. Romano
the three Frank elastic constants that are associated with tig] further investigated this pairwise additive potential pro-
three types of deformation: splay, twist, and bend, respegosed by Gruhn and He$5] using a Monte Carlo simula-
tively. In the equilibrium state, the directér must be, at tion. Recently, Luckhurst and Romafif] proposed another
each point, parallel to the “texture fieldh given by the scheme by removing the highest rank term from the expan-

functional derivative 13] sion of the potential and it would be used to study the elastic
and defect behavior of nematogdiTg.
- of An alternative to Monte Carlo is to use the Ericksen-
h=-— SR’ @ Leslie equatior{8—10Q] as a basis for a deterministic relax-

ation algorithm. In the absence of an external field, the
which can be split into the splay, twist, and bend componentg&ricksen-Leslie equation describing the relaxation of the di-
[13] rector field in nematics can be expressed as
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o1 . ing to Egs.(8) and (9), the Frank elastic free energy is a
i Z(nx h) <A, (7)  function of the tensofifi and its gradient¥ fifi, i.e.,
f=f(ngn,,V,ngn,). (10

herefix h is the torque per unit volume due to the curvature
elasticity, andy; is the rotational viscosity coefficient. Ex- We impose a small variatiodi(ngn,) at all points:
ternal torque, such as magnetic torque or viscous torque, can

be included easily. Starting from a relaxation equation for Sf— of s N V(8 dF

the alignment tensor, Kilian and Hefskl,12 put forward an ~ ) ongn, (ngn) oV ngn, o(ONgn,) rdf.
algorithm that maintains the nematic symmetry. However, (11

only results for the case of equal constants have been re-

ported. Integrating the second term by parts and neglecting the sur-

In this paper, we present a deterministic model, whichface terms

handles the three Frank elastic constants as discrete values.
In this model, the curvature elastic torque, rather than the 5f_J ( Jf ( Jf )]5(n n.)df. (12
free energy, is used as a driving force of the evolution of the B angn “\ gV ngn By =

ay, g By allptly
director field. Compared to the vectorial modél, the ad-
vantage of the current model is that nematic symmetry igNow considering the symmetry of the tensor
conserved automatically by using the tensorial expression of
the elastic torque. Another advantage is that this model can 5f:2f n { Jf _ ( of )]5n df. (13
be used for the numerical calculation of both the static and Tlangn, “\dV,ngn, P
the dynamic behavior of the director. The paper is arranged
as follows. Section Il presents the derivation of the algo-By comparing Eq(12) with Eg. (2), we find
rithm. Starting from the tensorial form of the Frank elastic
free energy[5], a “texture field” expression in tensorial hg=2n,1g,, (14)
form is deduced. In Sec. lll, the model is tested and cali-
brated by reproducing the Fdericksz transitions. In Sec. f o=V
IV the simulation results for the evolution of defects are By Te
given in the case of two-dimension@D) equivalent results ] ]
for 3D samples, as well as the dynamical properties of thdn the presence of an external field, the evolution of the

director, are described in fo”owing pap{@_’la directors is gO\_/eI’I’led by the fO”OWing Ericksen-Leslie or
Nemato-dynami¢13] equation:

of
anﬁny'

of
VvV ngn,

(15

Il. MODEL IR
. , ) —+7-VA=A-Q+N(-A—T:AAN)
The Frank elastic free energy can be written in the fol- dt
lowing tensorial according to Gruhn and Hé&$

f=3[3kaV,n,n,Vyn,n,+(k;—kp)Vynyn,V,n,n,
+ (16)

N

(k3_kl)n,u.nvv,un)\nkvvn}xnk]i (8)

wherel” andQ are the symmetric and antisymmetric parts of
which is equivalent to Eq(1) except for surface termd6].  the velocity ¢#) gradient tensor, which represents the exten-
Here the Greek subscripts refer to the Cartesian component§ional and rotational effect, respectivelﬁ, and y are the

for which the summation convention is used, and magnetic field and susceptibility, respectively, ands the
tumbling parameter.
d According to Beris and Edward46], f ;. should be sym-
Vo=, T=(X1,X2,X3)=(X,¥,2). . 9 “ ¢ ]- Ay Y
X, metric and traceless. The “texture fieldY, given by Egs.

(14) and(15), is found to take the following form:

In fact, we propose a tensorial form, which is exactly
equivalent to Eq(1) including the surface terms hg=2n,{KAnng+ (Ky—Ko)[V 0NN+ V000,

- 25 .V nn]+(ks—k)[V.(n,nV,n,n
f=%[%kz(V)\nMnVVngn,,—V)\nﬂn,,V,,nﬂn)\) 3 YapV y\lly )\] ( 3 l)[ y( YNV A B)

=3 Van,mVenn,+ 5 8,5V,mn, V. mn,I}

17

+k,Vamn,V,n,n,

+%(k3_kl)n,unvv/.l,n)\nkvvn)\nx]! (9)
) whereV , 5= 3%/ X ,IXg.
In order to derive the texture field, which is generated by This final expression can in fact be deduced from either
spatial inhomogeneity of the director field, note that accordEgs. (8) or (9), with exactly the same result. k,=k,
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FIG. 1. A schematic representation of the lattice model. The —_— ——— (I
liquid crystal is subdivided into cubic cells. Each cell has a director — = e?
and the director is the average orientation of the long axes of the
molecules within the cell. Pure Splay Pure twist Pure bend

=k;, EQ. (17) is reduced to the one-constant form, which  FIG. 2. The schematic representation of the three geometries of
was used by Kilian and He$41]. the Fredericksz transitions@a) pure splay,(b) pure twist, andc)
Equations(16) and (17) describe the relaxation of the di- pure bend transitions. The initial pattern is a monodomain that is
rector field. For a given initial pattern and boundary condi-imposed by the boundary conditiond. is the external magnetic
tions, Eq.(16) can be integrated numerically by standardfield, its direction is perpendicular to the initial director. The direc-
techniques. tors are initially parallel tce.
The director field of an LCP is represented by a set of o
directors in the cells of a spatially fixed cubic lattice asthe effect of a magnetic field. The results reporgfiwere
shown in Fig. 1. A normal finite difference scheme is consistent with the theoretical prediction. It is quite straight-
adopted for discretising the Ericksen-Leslie equati@f).  forward to use the current algorithm to simulate theefére
Starting from a given director pattern and boundary condiricksz transitions. In a quiescent stafe<(0) but including
tions, the evolution of the director field can be simulated. the magnetic torque, the governing equation has the follow-
ing form:
Ill. REPRODUCING THE FRE EDERICKSZ TRANSITIONS
om 1 . I -
—=—{h+yA-HH—[h-A+ y(A-H)?]A}. (19

In order to ascertain that the model can differentiate the
three types of distortions, the T@ericksz transition§17]

have been simulated. The 'Edericksz transitions occur . .
. e . The following calculations have been performed on a 20
when an electric or magnetic fieldH{ is applied to an LC

. ) X p X 20X 20 lattice and the strength of magnetic field has been
cell that is constrained by fixed boundary conditions at two ¢ g

parallel plates. If the magnetic field is perpendicular to thenormallzed byHe -

easy axis of the directorss), the pure Fredericksz transi-
tions can occur. When a magnetic fiehd & is applied, the
equilibrium uniform state, in which the directors are all As a result of symmetry, the twist angle reaches its maxi-
aligned along the easy axis, remains unchanged as long asum value at the middle plane. The maximum twist angle
the strength is less than the critical-field strenbith. If H ¢ can be obtained by the following equatipti7]:

>H_, the directors lose their stability and bifurcation of the
stable states develops, leading to a tilt of the directors to- T_c
wards the magnetic-field direction. By defining suitable He
boundary conditions of two plates and the direction of the
applied field, only one type of distortion is activated at the 90
onset of the transition. So the threshéld is only related to
the elastic constant corresponding with that distortion. The
threshold value is given bj17]

T ki 1/2
=gl 19

wherei=1,2,3, respectively, andlis the thickness of the LC
cell. Figure 2 shows a diagram of these three typical geom-
etries.

Based on the theoretical solutions, thé detericksz tran- 0
sitions have been successfully applied to measure the Frank 0 05 1 15 2 o5 3
elastic constants experimentally for small molecular weight
liquid crystals. Here the simulation of the Edericksz tran-
sitions are used as a test of the effect of differentiation of the FIG. 3. The twist angles of the directors on the midplane versus
three elastic constants in the model. the magnetic-field strength for the pure twist transition. The con-

Hobdell and Windlg4] simulated the Fredericksz tran- tinuous line is the analytical result, the point the computational
sitions by including an additional energy term that reflectedesuilt.

A. Twist transitions

H 2 fw/z dw

o (1—Sirf gy sin® W)1z (20

——Theory

45 A Computation

Mid-plane twist angle (deg)

Normalized magnetic strength
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FIG. 4. The twist angles of the directors in the different layers
for the pure twist transition. Lines and points indicate analytical and

computational results, respectively. §
ke
The distribution of the twist angles along the thickness di- §»
rection(y) is determined by17] %
Hy 1 dw 5 x
y ¢ 1 A
Hod ™ ;fo (Si? f—siP w2 O=y=zd. (21 R
< .
As shown in Figs. 3 and 4, the transitions are reproduced s 95 o H-20
faithfully; the onset is at the correct field strength, and the ® Normalized distance in y axis
twist angles depend on the field strength and twist constant
as expected. The pure twist transition is found to be indepen- kymkamko S H=1.01
dent ofk,; andk;. The angles of the directors on the mid- __ ) ,u--”";__o_ —-—-H=1.05
planeversusthe magnetic-field strength are given in Fig. 3. & ¢ | Y e H=1.20
We have calculated the following casds;=k,=ks, 2k; ry p-",,/ ——— H=1.80
=k,=ks, 0.k =k,=ks, k;=k,=2ks, and k;=k, g = e H=2.00
=0.%3, the results are exactly the same. The twist angles of & 30 - x H=1.01
the directors in different layers are given in Fig. 4. & A H=1.05
+ H=1.20
0 ‘ =1.
B. Splay and bend transitions 0 0.25 05 : :z;go

: . . , c e
The tilt angle reaches its maximum value at the middle © Normalized distance in y axie

plane in the cases of pure splay and bend deformation. The FiG. 6. The tilt angles of the directors in the different layers for
maximum tilt angleé,, can be obtained by the following the pure splay transition. Lines and points indicate analytical and

equation[17]: computational results, respectivelig) k;=k,=2ks, (b) k;=k,
20.2(3, and(c) k1:k2:k3.
% ———-Case 1 ) ) 2
...... Case 2 H 2 fﬂlZ(l-i-sSInz O SIP W
B == . . dv, (22
3 Case 3 He 7)o | 1—sirf g,sif ¥
o 60 o Case1 )
g’ A Case2 & g A A where e =k3/k;—1 represents the effect of elastic anisot-
> X Case3 x ropy. The distribution of the tilt angles along tlgedirection
2 9 a7 is determined by17]
8 A . .
3 ’ Hy 1j0 1+esif ¥ 1’2dq, o<veld
T = BV
5 Hod 7 Jo |\ S —SIP W o USYS?
0 3

(23

1 1.5
i i h . . .
Normalized magnetic strengt Figure 5 shows the angles of the directors on the midplane

FIG. 5. The tilt angles of the directors on the midplane versusversusthe magnetic-field strength in the case of the pure
the magnetic-field strength for the pure splay transition. Lines andpPlay transition. Figure 6 gives the splay angles of the direc-
points indicate analytical and computational results, respectivelytors in different layers in the cases &f=k,=0.%K3, k;
Cases 1, 2, and 3 refer lg=k,=k3, k;=k,=0.%K5, andk,=k, =k,=2k3, and k;=k,=Kk3, respectively. Only the results
=2kg, respectively. for the pure splay transitions are presented here.
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(24)

ka[(N1V1n1n;+n,V,n5n;)2

1

2
2
+(n{Vinins+n,Vonin,)<].

ky[(n2V4nyn;—nyV,ngng)?
+(nyVinin,—nyVongng)?]

1
2
+

f

As a further step to examine the performance of this de-
terministic tensor algorithm, it has been applied to topologi-

tion of the elastic anisotropy of a material, a detailed under-
cal defects in two dimensions, according to thin-film geom-
yetry. The relaxation algorithm in 2D is the same as that in 3D
dlescribed in Sec. Il, and the tensorial form of the Frank
lastic free energy is reduced to

(d)
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It is clear that the simulation results of the Edericksz

transitions are in perfect agreement with the analytical sol
imaging techniques

IV. DIRECTOR ANNEALING

(b)

FIG. 7. Snapshots of the director fields during annealing in 2D. The defect cores, which are high free-energy cells, are indicated either

by the filled square$+1/2 defect coresor by the filled circleq—1/2 defect cores (a) Initial pattern in which the directors are randomly

oriented,(b) k;=Kk3, (c) k;=10k;, and(d) ky=10k; .

The pure splay transition is independentlof and de-
pends onk,/k; as predicted. Similarly, for the pure bend standing of the expected director field is required.

The director structure of thin film of LCP’s can be ob-

served experimentally by special
[18,19. Since these observations are used for a determin@onsidering the symmetry, E¢L4) becomes

stants. As an example, the following section presents simu-

transition, the independence lof and correct variation with
the microstructure in nematics with unequal elastic con®
lations of the annealing of a nematic thin film.

k,/k; have been established.
tions. This convincing test builds the confidence to simulat
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hy=2n,f1;+2n,f 15, (25) rise shape. The geometry shape of th&/2 disclinations, on
the other hand, is insensitive to the Frank elastic constants.
h,=2n;f;,—2n,f,4, (26)  These simulation results are in good agreement with the the-
oretical prediction20] and previous simulationsl,3] using
where different levels of approximation.
f11=Kk1(non,Vinin; +n1n,Voonin =200,V onng) V. SUMMARY
+k3(N1N1V1aN1Ng +NoNoVaoning +2n,n5Vionng) A numerical model has been presented to simulate the

microstructures in nematic liquid crystals. A lattice model is

+ 2 (ks—k)[(Vonin,+Vinng)? . : . .
2(ks~ko)[(VaNiNo+Vanany) adopted and the director is used to represent the orientation

—(Vyinin,—V,nin;)?], (270 of the liquid crystals. The evolution of the directors can be
considered as finding the state where the directors are paral-
f1o=k1(non,V 4NNy +n1nVoonin,—2n,n,V5n4n5) lel to the “texture field” instead of finding the minimum of
the elastic free energy. The elastic effect of the textures is
+Ka(N1N1V13N1N5+ NaNa Vs Np+ 20105V 15010;) taken into account by using a tensor expression of the elastic
+(Kg—kq) (V2nina+Vining)(Vanin,— Vongng)]. torque, in which the three elastic constants are included and
nematic symmetry is conserved automatically.
(28 The current model can accurately reproduce thedee

icksz transitions. It shows the splay, twist, and bend con-
tants are appropriately identified.
The model has been used to simulate the defect structures

In two dimensions, only the splay and the bend distortion
occur. The simulation should show the effect of splay an

bend elastic anisotropy on the distortions. in thin LCP films without an external field. Starting from a

_Figure 7 gives the typ|callpa_tterns during the brocess o andomly oriented director pattern, half-defect pairs are ob-
director annealing. The periodic boundary conditions are,, . during the annealing. As expected the distortions
used in all of the boundaries. No external field is applied an

, : round+ 3 def nd considerably on the elastic an-
the initial pattern is a random distribution of the directors as, ound 3 defects depend considerably on the elastic a

o . sotropy.
shown in Fig. Ya). F|gures 1), 7(c), and 1d) are snapshots We conclude that the current model can treat the effect of
of the director field in the case df,=ks, k;=10ks, and elasticity in full accord with the theoretical basis. The test
k.3:10k1 respectively. The snapshots show that th.e dIStor'results reported here confirm its behavior. The simulation
tions around+1/2 defects depend on the elastic anisotropy aqits of the static and dynamic behavior of LCP’s are given
In the case of equal constants, i.e., no elastic anisoféigy in two papers to follow[14,15
7(b)], the distortions of bend and splay are balanced. If the T
bend constant is smaller than the splay consf&ig. 7(c)],
the distortion around+1/2 defect core is mainly bend type,
showing an archway structure. If the splay constant is The authors would like to acknowledge support by the
smaller than the bend constdifiig. 7(d)], the splay distor- EPSRC grant under its “Processing of conventional struc-
tion around+1/2 defect core is favored and tends to a sun-tural materials” program.
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