
PHYSICAL REVIEW E, VOLUME 64, 011704
Deterministic numerical model for treating the three elastic constants
in nematic liquid-crystalline polymers
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~Received 18 September 2000; published 18 June 2001!

In this paper, a deterministic model, which considers the three Frank elastic constants, is introduced. It is
based on a lattice model and a director is used to represent the orientation of the liquid crystals in each cell. A
tensor expression of the so-called ‘‘texture field’’ is deduced so that the nematic symmetry is conserved
automatically. In the current model, the evolution of the director field can be viewed as a process towards the
state of zero elastic torque. The model forms the basis for an improved understanding of the mesoscale
structures and rheological phenomena of nematic liquid-crystalline polymers. It has been tested in its ability to
reproduce the Fre´edericksz transitions, and simulations of thin liquid crystalline polymer films clearly show the
effect of unequal elastic constants on the director microstructure evolution.
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I. INTRODUCTION

The texture evolution of liquid-crystalline polymer
~LCP’s! in external fields is of significant scientific and in
dustrial interest, and considerable effort has been investe
understanding the orientation field, both experimentally a
numerically. Although modeling has contributed signi
cantly to an improved understanding of this complex proc
@1–12#, existing three-dimensional models fall short of t
requirements for a realistic description on either or both
the following grounds:~a! they assume equal Frank elas
constants although LCP’s have very different values, and~b!
Monte Carlo simulations are used, which cannot be ea
related to real-time evolution or deal with external fields,
particular flow fields, in a straightforward manner. In th
paper, we aim to advance our ability to handle LCP struct
evolution by presenting a deterministic model that includ
the three Frank elastic constants as discrete entities.

From the macroscopic point of view, the orientation o
nematic liquid crystal can be described by a director fi
nW (rW,t) and the equilibrium state of the director field is cha
acterized by a minimum of the Frank elastic free energy. T
Frank elastic free-energy density of a deformed specim
relative to the nondeformed one can be expressed by
following vectorial form@13#

f 5 1
2 $k1~¹W •nW !21k2@nW •~¹W 3nW !#2

1k3@nW 3~¹W 3nW !#•@nW 3~¹W 3nW !#%, ~1!

wherenW •nW 51 andnW is equivalent to2nW , k1 , k2 , andk3 are
the three Frank elastic constants that are associated with
three types of deformation: splay, twist, and bend, resp
tively. In the equilibrium state, the directornW must be, at
each point, parallel to the ‘‘texture field’’hW given by the
functional derivative@13#

hW 52
d f

dnW
, ~2!

which can be split into the splay, twist, and bend compone
@13#
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hW 5hW S1hW T1hW B , ~3!

hW S5k1¹W ~¹W •nW !, ~4!

hW T52k2$A¹W 3nW 1¹W 3~AnW !%, ~5!

hW B5k3$BW 3~¹W 3nW !1¹W 3~nW 3BW !%, ~6!

whereA5nW •¹W 3nW andBW 5nW 3(¹W 3nW ).
Mesoscale lattice models have been widely used@1–4# for

simulating textures and their evolution in LC’s. In gener
the simulations are started from the isotropic phase, in wh
the directors are randomly oriented. The relaxation al
rithms are designed to minimize the total free energy of
system, by picking a cell at random and applying differe
annealing rules. According to Assender and Windle@2#, a
careful choice of the energy function form is essential, if t
full Frank form is not used. The vectorial form of the Fran
elastic free energy has been applied@4# previously to treat
unequal elastic constants. In order to get the free energ
subtly designed flip scheme was developed to treat the di
tor symmetry, which requires thatnW is physically equivalent
to 2nW .

In order to deal with the nematic symmetry, Gruhn a
Hess@5# proposed a model, in which the Frank free ener
was expressed in a tensorial form. This means that the n
atic symmetry is conserved automatically. In their model
Monte Carlo algorithm was implemented to find the equil
rium configuration of the director field, although only two
dimensional simulation results were reported@5#. Romano
@6# further investigated this pairwise additive potential pr
posed by Gruhn and Hess@5# using a Monte Carlo simula
tion. Recently, Luckhurst and Romano@7# proposed anothe
scheme by removing the highest rank term from the exp
sion of the potential and it would be used to study the ela
and defect behavior of nematogens@7#.

An alternative to Monte Carlo is to use the Erickse
Leslie equation@8–10# as a basis for a deterministic relax
ation algorithm. In the absence of an external field,
Ericksen-Leslie equation describing the relaxation of the
rector field in nematics can be expressed as
©2001 The American Physical Society04-1
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]nW

]t
5

1

g1
~nW 3hW !3nW , ~7!

herenW 3hW is the torque per unit volume due to the curvatu
elasticity, andg1 is the rotational viscosity coefficient. Ex
ternal torque, such as magnetic torque or viscous torque,
be included easily. Starting from a relaxation equation
the alignment tensor, Kilian and Hess@11,12# put forward an
algorithm that maintains the nematic symmetry. Howev
only results for the case of equal constants have been
ported.

In this paper, we present a deterministic model, wh
handles the three Frank elastic constants as discrete va
In this model, the curvature elastic torque, rather than
free energy, is used as a driving force of the evolution of
director field. Compared to the vectorial model@4#, the ad-
vantage of the current model is that nematic symmetry
conserved automatically by using the tensorial expressio
the elastic torque. Another advantage is that this model
be used for the numerical calculation of both the static a
the dynamic behavior of the director. The paper is arran
as follows. Section II presents the derivation of the alg
rithm. Starting from the tensorial form of the Frank elas
free energy@5#, a ‘‘texture field’’ expression in tensoria
form is deduced. In Sec. III, the model is tested and c
brated by reproducing the Fre´edericksz transitions. In Sec
IV the simulation results for the evolution of defects a
given in the case of two-dimensional~2D! equivalent results
for 3D samples, as well as the dynamical properties of
director, are described in following papers@14,15#.

II. MODEL

The Frank elastic free energy can be written in the f
lowing tensorial according to Gruhn and Hess@5#

f 5 1
2 @ 1

2 k2¹lnmnn¹lnmnn1~k12k2!¹lnlnm¹nnnnm

1 1
2 ~k32k1!nmnn¹mnlnk¹nnlnk#, ~8!

which is equivalent to Eq.~1! except for surface terms@16#.
Here the Greek subscripts refer to the Cartesian compon
for which the summation convention is used, and

¹a5
]

]xa
, rW5~x1 ,x2 ,x3!5~x,y,z!.

In fact, we propose a tensorial form, which is exac
equivalent to Eq.~1! including the surface terms

f 5 1
2 @ 1

2 k2~¹lnmnn¹lnmnn2¹lnmnn¹nnmnl!

1k1¹lnlnm¹nnnnm

1 1
2 ~k32k1!nmnn¹mnlnk¹nnlnk#, ~9!

In order to derive the texture fieldhW , which is generated by
spatial inhomogeneity of the director field, note that acco
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ing to Eqs.~8! and ~9!, the Frank elastic free energy is
function of the tensornW nW and its gradients¹nW nW , i.e.,

f 5 f ~nbng ,¹anbng!. ~10!

We impose a small variationd(nbng) at all points:

d f 5E H ] f

]nbng
d~nbng!1

] f

]¹anbng
¹a~dnbng!J drW.

~11!

Integrating the second term by parts and neglecting the
face terms

d f 5E H ] f

]nbng
2¹aS ] f

]¹anbng
D J d~nbng! drW. ~12!

Now considering the symmetry of the tensor

d f 52E ngH ] f

]nbng
2¹aS ] f

]¹anbng
D J dnb drW. ~13!

By comparing Eq.~12! with Eq. ~2!, we find

hb52ng f bg , ~14!

f bg5¹aS ] f

]¹anbng
D2

] f

]nbng
. ~15!

In the presence of an external field, the evolution of t
directors is governed by the following Ericksen-Leslie
Nemato-dynamic@13# equation:

]nW

]t
1nW •“nW 5nW •V1l~G•nW 2G:nW nW nW !

1
1

g1
$hW 1xnW •HW HW 2@hW •nW 1x~nW •HW !2#nW %,

~16!

whereG andV are the symmetric and antisymmetric parts
the velocity (nW ) gradient tensor, which represents the exte
sional and rotational effect, respectively,HW and x are the
magnetic field and susceptibility, respectively, andl is the
tumbling parameter.

According to Beris and Edwards@16#, f bg should be sym-
metric and traceless. The ‘‘texture field’’hW , given by Eqs.
~14! and ~15!, is found to take the following form:

hb52na$k2Dnanb1~k12k2!@¹agngnb1¹bgngna

2 2
3 dab¹glngnl#1~k32k1!@¹g~ngnl¹lnanb!

2 1
2 ¹angnl¹bngnl1 1

6 dab¹gnlnm¹gnlnm#%,

~17!

where¹ab5]2/]xa]xb .
This final expression can in fact be deduced from eit

Eqs. ~8! or ~9!, with exactly the same result. Ifk15k2
4-2
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5k3, Eq. ~17! is reduced to the one-constant form, whi
was used by Kilian and Hess@11#.

Equations~16! and~17! describe the relaxation of the d
rector field. For a given initial pattern and boundary con
tions, Eq. ~16! can be integrated numerically by standa
techniques.

The director field of an LCP is represented by a set
directors in the cells of a spatially fixed cubic lattice
shown in Fig. 1. A normal finite difference scheme
adopted for discretising the Ericksen-Leslie equation~16!.
Starting from a given director pattern and boundary con
tions, the evolution of the director field can be simulated

III. REPRODUCING THE FRE´ EDERICKSZ TRANSITIONS

In order to ascertain that the model can differentiate
three types of distortions, the Fre´edericksz transitions@17#
have been simulated. The Fre´edericksz transitions occu
when an electric or magnetic field (HW ) is applied to an LC
cell that is constrained by fixed boundary conditions at t
parallel plates. If the magnetic field is perpendicular to
easy axis of the directors (eW ), the pure Fre´edericksz transi-
tions can occur. When a magnetic fieldHW'eW is applied, the
equilibrium uniform state, in which the directors are a
aligned along the easy axis, remains unchanged as lon
the strength is less than the critical-field strengthHc . If H
.Hc , the directors lose their stability and bifurcation of th
stable states develops, leading to a tilt of the directors
wards the magnetic-field direction. By defining suitab
boundary conditions of two plates and the direction of
applied field, only one type of distortion is activated at t
onset of the transition. So the thresholdHc is only related to
the elastic constant corresponding with that distortion. T
threshold value is given by@17#

Hc5
p

d S ki

x D 1/2

, ~18!

wherei 51,2,3, respectively, andd is the thickness of the LC
cell. Figure 2 shows a diagram of these three typical geo
etries.

Based on the theoretical solutions, the Fre´edericksz tran-
sitions have been successfully applied to measure the F
elastic constants experimentally for small molecular wei
liquid crystals. Here the simulation of the Fre´edericksz tran-
sitions are used as a test of the effect of differentiation of
three elastic constants in the model.

Hobdell and Windle@4# simulated the Fre´edericksz tran-
sitions by including an additional energy term that reflec

FIG. 1. A schematic representation of the lattice model. T
liquid crystal is subdivided into cubic cells. Each cell has a direc
and the director is the average orientation of the long axes of
molecules within the cell.
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the effect of a magnetic field. The results reported@5# were
consistent with the theoretical prediction. It is quite straig
forward to use the current algorithm to simulate the Fre´ed-
ericksz transitions. In a quiescent state (nW 50) but including
the magnetic torque, the governing equation has the follo
ing form:

]nW

]t
5

1

g1
$hW 1xnW •HW HW 2@hW •nW 1x~nW •HW !2#nW %. ~19!

The following calculations have been performed on a
320320 lattice and the strength of magnetic field has be
normalized byHc .

A. Twist transitions

As a result of symmetry, the twist angle reaches its ma
mum value at the middle plane. The maximum twist an
fm can be obtained by the following equation@17#:

H

Hc
5

2

p E
0

p/2 dC

~12sin2 fm sin2 C!1/2. ~20!

e
r
e

FIG. 2. The schematic representation of the three geometrie
the Fréedericksz transitions:~a! pure splay,~b! pure twist, and~c!
pure bend transitions. The initial pattern is a monodomain tha

imposed by the boundary conditions.HW is the external magnetic
field, its direction is perpendicular to the initial director. The dire
tors are initially parallel toeW .

FIG. 3. The twist angles of the directors on the midplane ver
the magnetic-field strength for the pure twist transition. The c
tinuous line is the analytical result, the point the computatio
result.
4-3



di

ce
th
ta
e

d-
3.

s

dl
T

t-

ane
re

ec-

s

rs
n

su
an
el

or
and

HOUJIE TU, GERHARD GOLDBECK-WOOD, AND ALAN H. WINDLE PHYSICAL REVIEW E64 011704
The distribution of the twist angles along the thickness
rection ~y! is determined by@17#

H

Hc

y

d
5

1

p E
0

f dC

~sin2 fm2sin2 C!1/2, 0<y< 1
2 d. ~21!

As shown in Figs. 3 and 4, the transitions are reprodu
faithfully; the onset is at the correct field strength, and
twist angles depend on the field strength and twist cons
as expected. The pure twist transition is found to be indep
dent of k1 and k3 . The angles of the directors on the mi
planeversusthe magnetic-field strength are given in Fig.
We have calculated the following cases:k15k25k3 , 2k1
5k25k3 , 0.2k15k25k3 , k15k252k3 , and k15k2
50.2k3 , the results are exactly the same. The twist angle
the directors in different layers are given in Fig. 4.

B. Splay and bend transitions

The tilt angle reaches its maximum value at the mid
plane in the cases of pure splay and bend deformation.
maximum tilt angleum can be obtained by the following
equation@17#:

FIG. 4. The twist angles of the directors in the different laye
for the pure twist transition. Lines and points indicate analytical a
computational results, respectively.

FIG. 5. The tilt angles of the directors on the midplane ver
the magnetic-field strength for the pure splay transition. Lines
points indicate analytical and computational results, respectiv
Cases 1, 2, and 3 refer tok15k25k3 , k15k250.2k3 , andk15k2

52k3 , respectively.
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Hc
5

2

p E
0

p/2S 11« sin2 um sin2 C

12sin2 um sin2 C D 1/2

dC, ~22!

where «5k3 /k121 represents the effect of elastic aniso
ropy. The distribution of the tilt angles along they direction
is determined by@17#

H

Hc

y

d
5

1

p E
0

uS 11« sin2 C

sin2 um2sin2 C D 1/2

dC, 0<y< 1
2 d.

~23!

Figure 5 shows the angles of the directors on the midpl
versus the magnetic-field strength in the case of the pu
splay transition. Figure 6 gives the splay angles of the dir
tors in different layers in the cases ofk15k250.2k3 , k1
5k252k3, and k15k25k3 , respectively. Only the result
for the pure splay transitions are presented here.

d

s
d
y.

FIG. 6. The tilt angles of the directors in the different layers f
the pure splay transition. Lines and points indicate analytical
computational results, respectively.~a! k15k252k3 , ~b! k15k2

50.2k3 , and~c! k15k25k3 .
4-4
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FIG. 7. Snapshots of the director fields during annealing in 2D. The defect cores, which are high free-energy cells, are indica
by the filled squares~11/2 defect cores! or by the filled circles~21/2 defect cores!. ~a! Initial pattern in which the directors are random
oriented,~b! k15k3 , ~c! k1510k3 , and~d! k3510k1 .
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The pure splay transition is independent ofk2 and de-
pends onk1 /k3 as predicted. Similarly, for the pure ben
transition, the independence ofk2 and correct variation with
k1 /k3 have been established.

It is clear that the simulation results of the Fre´edericksz
transitions are in perfect agreement with the analytical so
tions. This convincing test builds the confidence to simul
the microstructure in nematics with unequal elastic c
stants. As an example, the following section presents si
lations of the annealing of a nematic thin film.

IV. DIRECTOR ANNEALING

The director structure of thin film of LCP’s can be o
served experimentally by special imaging techniqu
@18,19#. Since these observations are used for a determ
01170
-
e
-
u-

s
na

tion of the elastic anisotropy of a material, a detailed und
standing of the expected director field is required.

As a further step to examine the performance of this
terministic tensor algorithm, it has been applied to topolo
cal defects in two dimensions, according to thin-film geo
etry. The relaxation algorithm in 2D is the same as that in
described in Sec. II, and the tensorial form of the Fra
elastic free energy is reduced to

f 5 1
2 k1@~n2¹1n1n12n1¹2n1n1!2

1~n2¹1n1n22n1¹2n1n2!2#

1 1
2 k3@~n1¹1n1n11n2¹2n1n1!2

1~n1¹1n1n21n2¹2n1n2!2#. ~24!

Considering the symmetry, Eq.~14! becomes
4-5
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h152n1f 1112n2f 12, ~25!

h252n1f 1222n2f 11, ~26!

where

f 115k1~n2n2¹11n1n11n1n1¹22n1n122n1n2¹12n1n1!

1k3~n1n1¹11n1n11n2n2¹22n1n112n1n2¹12n1n1!

1 1
2 ~k32k1!@~¹2n1n21¹1n1n1!2

2~¹1n1n22¹2n1n1!2#, ~27!

f 125k1~n2n2¹11n1n21n1n1¹22n1n222n1n2¹12n1n2!

1k3~n1n1¹11n1n21n2n2¹22n1n212n1n2¹12n1n2!

1~k32k1!~¹2n1n21¹1n1n1!~¹1n1n22¹2n1n1!].

~28!

In two dimensions, only the splay and the bend distortio
occur. The simulation should show the effect of splay a
bend elastic anisotropy on the distortions.

Figure 7 gives the typical patterns during the process
director annealing. The periodic boundary conditions
used in all of the boundaries. No external field is applied a
the initial pattern is a random distribution of the directors
shown in Fig. 7~a!. Figures 7~b!, 7~c!, and 7~d! are snapshots
of the director field in the case ofk15k3 , k1510k3, and
k3510k1 respectively. The snapshots show that the dis
tions around11/2 defects depend on the elastic anisotro
In the case of equal constants, i.e., no elastic anisotropy@Fig.
7~b!#, the distortions of bend and splay are balanced. If
bend constant is smaller than the splay constant@Fig. 7~c!#,
the distortion around11/2 defect core is mainly bend type
showing an archway structure. If the splay constant
smaller than the bend constant@Fig. 7~d!#, the splay distor-
tion around11/2 defect core is favored and tends to a su
oc
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rise shape. The geometry shape of the21/2 disclinations, on
the other hand, is insensitive to the Frank elastic consta
These simulation results are in good agreement with the
oretical prediction@20# and previous simulations@1,3# using
different levels of approximation.

V. SUMMARY

A numerical model has been presented to simulate
microstructures in nematic liquid crystals. A lattice model
adopted and the director is used to represent the orienta
of the liquid crystals. The evolution of the directors can
considered as finding the state where the directors are p
lel to the ‘‘texture field’’ instead of finding the minimum o
the elastic free energy. The elastic effect of the texture
taken into account by using a tensor expression of the ela
torque, in which the three elastic constants are included
nematic symmetry is conserved automatically.

The current model can accurately reproduce the Fre´eder-
icksz transitions. It shows the splay, twist, and bend c
stants are appropriately identified.

The model has been used to simulate the defect struct
in thin LCP films without an external field. Starting from
randomly oriented director pattern, half-defect pairs are
served during the annealing. As expected the distorti
around1 1

2 defects depend considerably on the elastic
isotropy.

We conclude that the current model can treat the effec
elasticity in full accord with the theoretical basis. The te
results reported here confirm its behavior. The simulat
results of the static and dynamic behavior of LCP’s are giv
in two papers to follow@14,15#.
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